Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation.
نویسندگان
چکیده
An electrical stimulus delivered to a muscle nerve during a maximal voluntary contraction usually produces a twitchlike increment in force. The amplitude of this "interpolated twitch" is widely used to measure voluntary "activation" of muscles. In the present study, a computer model of the human adductor pollicis motoneuron pool was used to investigate factors that affect the interpolated twitch. Antidromic occlusion of naturally occurring orthodromic potentials was modeled, but reflex effects of the stimulus were not. In simulations, antidromic collisions occurred with probabilities of between approximately 16% (in early recruited motoneurons) and nearly 100% (in late recruited motoneurons). The model closely predicted experimental data on the amplitude and time course of the rising phase of interpolated twitches over the full range of voluntary forces, except that the amplitude of interpolated twitches was slightly overestimated at intermediate contraction intensities. Small interpolated twitches (4.7% of the resting twitch) were evident in simulated maximal voluntary contractions, but were nearly completely occluded when mean peak firing rate was increased to approximately 60 Hz. Simulated interpolated twitches did not show the marked force drop that follows the peak of the twitch, and when antidromic collisions were excluded from the model interpolated twitch amplitude was slightly increased and time-to-peak force was prolonged. These findings suggest that both antidromic and reflex effects reduce the amplitude of the interpolated twitch and contribute to the force drop that follows the twitch. The amplitude of the interpolated twitch was related to "excitation" of the motoneuron pool in a nonlinear way, so that at near-maximal contraction intensities (>90% maximal voluntary force) increases in excitation produced only small changes in interpolated twitch amplitude. Thus twitch interpolation may not provide a sensitive measure of motoneuronal excitation at near-maximal forces. Increases in the amplitude of interpolated twitches such as have been observed in fatigue and various pathologies may reflect large reductions in excitation of the motoneuron pool.
منابع مشابه
Assessing voluntary muscle activation with the twitch interpolation technique.
The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that e...
متن کاملEMG Activity and Voluntary Activation during Isometric and Concentric Knee Extensions
It is well documented that the ability of human muscles to develop tension is dependent on the angular velocity. In concentric actions, the decline of maximal voluntary torque, consequential to a velocity increase, has been extensively studied. The underlying mechanisms may be attributed to either or both chemical and mechanical muscle properties and/or motor unit activation by the central nerv...
متن کاملQuantitative assessments of elbow flexor muscle performance using twitch interpolation in post-polio patients: no evidence for deterioration.
A large number of patients previously affected by polio have symptoms, including increased weakness and fatigue, which are collectively known as a post-polio syndrome. Prospective measurements of strength and endurance using twitch interpolation in post-polio patients are lacking and hence the exact rate of decline in muscle function in these patients is not well defined. We therefore measured ...
متن کاملVoluntary activation of human knee extensors measured using transcranial magnetic stimulation.
The aim of this study was to determine the applicability and reliability of a transcranial magnetic stimulation twitch interpolation technique for measuring voluntary activation of a lower limb muscle group. Cortical voluntary activation of the knee extensors was determined in nine healthy men on two separate visits by measuring superimposed twitch torques evoked by transcranial magnetic stimul...
متن کاملVoluntary activation and cortical activity during a sustained maximal contraction: an fMRI study.
Motor fatigue is an exercise-induced reduction in the force-generating capacity. The underlying mechanisms can be separated into factors residing in the periphery or in the central nervous system. We designed an experiment in which we investigated central processes underlying motor fatigue by means of magnetic resonance imaging in combination with the twitch interpolation technique. Subjects pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 1999